If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(x^2+2x+1)/(x^2+6x+9)=36/49
We move all terms to the left:
(x^2+2x+1)/(x^2+6x+9)-(36/49)=0
Domain of the equation: (x^2+6x+9)!=0We add all the numbers together, and all the variables
We move all terms containing x to the left, all other terms to the right
x^2+6x!=-9
x∈R
(x^2+2x+1)/(x^2+6x+9)-(+36/49)=0
We get rid of parentheses
(x^2+2x+1)/(x^2+6x+9)-36/49=0
We calculate fractions
(-36x^2-216x-324)/(49x^2+294x+441)+(49x^2+98x+49)/(49x^2+294x+441)=0
We multiply all the terms by the denominator
(-36x^2-216x-324)+(49x^2+98x+49)=0
We get rid of parentheses
-36x^2+49x^2-216x+98x-324+49=0
We add all the numbers together, and all the variables
13x^2-118x-275=0
a = 13; b = -118; c = -275;
Δ = b2-4ac
Δ = -1182-4·13·(-275)
Δ = 28224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{28224}=168$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-118)-168}{2*13}=\frac{-50}{26} =-1+12/13 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-118)+168}{2*13}=\frac{286}{26} =11 $
| x-(x*0.1)=722.17 | | n+-1=4n=9= | | 7-2y=1+y= | | -3x-2=5x-14 | | 3a+4=9a-12 | | 5/7t+5=2/7+14 | | 21k^2-14k=0 | | −4.8f+6.4=-8.48 | | 8v+56=3v+66 | | 19y+-20+6y+6y+-13y=4 | | -6=x-6x | | 15x=-6x | | 15=(.75x) | | -1/6x=-11 | | 8u+44=4u+48 | | 2r+r-3r+r=8 | | F(x)=x^2+10x+35 | | 4w-30=w+18 | | G+5g-4g=10 | | 6x+22=9x+16 | | w−10=-1 | | 5-5(7-7x)=0 | | 9v+17=12v-7 | | 8a+2=a+9 | | 9w+5w-11w+2w=5 | | 2-4(4p-7)=158 | | 4u-6=u | | 4 = d-4 | | 17r-8r+6r=-15 | | 10v-4=4v+38 | | y+-1=-11 | | 9q-q+4q+q-7q=18 |